A "aterragem" em solo do Planeta Vermelho está prevista para as 20h55 minutos, mas o acompanhamento online já começou às 19h15 minutos, e pode seguir tudo com a equipa do SAPO TEK. Estas últimas horas são um dos momentos mais arriscados de todo o projeto que prevê colocar em Marte o robot mais avançado de sempre, que vai recolher amostras e trazê-las de volta à Terra e confirmar as condições já verificadas em missões anteriores a Marte.
O rover Perseverance é a estrela da missão e foi construído no Laboratório da NASA, no sul da Califórnia, mas junta várias parcerias, entre as quais com a Agência Espacial Europeia, a ESA. O rover vai tornar-se o próximo habitante robótico de Marte, juntando-se a outro rover, um módulo de pouso e vários orbitadores atualmente em funcionamento no Planeta Vermelho, ou na sua órbita.
O que diferencia este explorador?
1. Em busca de sinais de vida antiga
Missões anteriores da NASA descobriram evidências de que Marte já hospedou água corrente antes de se tornar um deserto gelado. No início de sua história, Marte tinha ambientes mais quentes na superfície que poderiam ter sustentado vida microbiana. O objetivo do Perseverance é dar o próximo passo, buscando, como objetivo principal, responder a uma das questões-chave da astrobiologia: Existem sinais (ou bioassinaturas) de vida microbiana passada em Marte?
Essa meta científica exigente requer um novo conjunto de instrumentos inovadores para lidar com a questão de vários ângulos. Dois deles irão desempenhar um papel particularmente importante na busca de sinais potenciais de vidas passadas: SHERLOC (abreviação de Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals), que pode detectar matéria orgânica e minerais, e PIXL (abreviação de Planetary Instrumento para litoquímica de raios-X), que mapeia a composição química de rochas e sedimentos. Os instrumentos permitirão aos cientistas analisar esses recursos com um nível de detalhe mais elevado do que qualquer rover anterior.
O Perseverance também será capaz de usar alguns instrumentos para coletar dados científicos à distância: as câmaras do Mastcam-Z podem fazer zoom em texturas de rochas de lugares tão distantes quanto um campo de futebol, enquanto o SuperCam usará um laser para destruir rocha e regolito (rocha quebrada e poeira) para estudar sua composição no vapor resultante. O RIMFAX (abreviação de Radar Imager for Mars ’Subsurface Experiment) vai usar ondas de radar para sondar características geológicas subterrâneas.
2. Cratera Jazero, um local de grande potencial
O local escolhido para pousar o rover é interessante mas difícil. Graças às novas tecnologias que permitem ao Perseverance direcionar seu local de "amartagem" com mais precisão e evitar perigos de pousar de forma autónoma, a espaçonave pode pousar com segurança num intrigante delta de rio antigo com penhascos íngremes, dunas de areia e campos de pedras.
A cratera de Jezero é uma bacia de 45 quilómetros de largura localizada no hemisfério norte de Marte. Há cerca de 3,5 mil milhões de anos, um rio fluiu para um corpo de água do tamanho do Lago Tahoe, depositando sedimentos em forma de leque conhecido como delta. A equipe científica do Perseverance acredita que este antigo delta de rio e depósitos de lagos podem ter colecionado e preservado moléculas orgânicas e outros sinais potenciais de vida microbiana.
Esta imagem mostra penhascos vermelhos em camadas surgindo de uma superfície plana e marrom. A superfície do penhasco inclina-se da direita para a esquerda, com os penhascos mais próximos do lado direito da imagem e os mais distantes à esquerda. Nuvens cor de rosa pairam sobre as cristas dos penhascos.
3. A recolha de dados importantes sobre a geologia e o clima de Marte
As sondas em órbitra de Marte têm reunido imagens e dados da cratera de Jezero a mais de 300 quilómetros de distância, mas encontrar sinais de vida antiga na superfície requer uma inspeção muito mais detalhada. E por isso é preciso estar no solo. Compreender as condições climáticas anteriores de Marte e ler a história geológica gravada nas suas rochas dará aos cientistas uma noção mais rica de como era o planeta em seu passado distante. Estudar a geologia e o clima do Planeta Vermelho também pode dar uma noção das razões porque a Terra e Marte - apesar de algumas semelhanças iniciais - acabaram tão diferentes.
4. Capacidade de superar desafios
A missão é arriscada e a NASA sublinha que não foi fácil fazer a sua preparação durante uma pandemia, mas que procurar sinais de vida antiga, recolher amostras e testar novas tecnologias não são feitos fáceis. Nem é um toque suave em Marte: apenas cerca de 50% das tentativas de chegar ao solo marcianas, por qualquer agência espacial, foram bem-sucedidas.
5. Primeira etapa de uma viagem de ida e volta a Marte
O Perseverance é o primeiro rover com um sistema de recolha de amostra para Marte que irá empacotar amostras promissoras para trazer de volta à Terra numa missão futura.
Em vez de pulverizar a rocha como a broca da Curiosity faz, a broca da Perseverance cortará núcleos de rocha intactos que são aproximadamente do tamanho de um pedaço de giz e os colocará em tubos de amostra que armazenará até que o rover alcance um local apropriado de queda em Marte . O rover também pode entregar as amostras a uma sonda que faz parte da campanha planejada de devolução de amostras de Marte pela NASA e pela ESA (Agência Espacial Européia).
6. Os instrumentos e tecnologia que ajudarão a prepara o caminho para futuras missões humanas à Lua e Marte
Entre as tecnologias preparadas para o futuro na missão Mars 2020 Perseverance que vai ser em missões futuras está a Navegação Relativa ao Terreno. Como parte do sistema de pouso da nave espacial, a Navegação Relativa ao Terreno é a principal razão pela qual o Perseverance pode explorar um lugar tão interessante como a Cratera de Jezero. Ele permitirá que a nave espacial compreenda de forma rápida e autónoma sua localização sobre a superfície marciana e modifique sua trajetória no momento de "amartagem".
O Perseverance também terá mais autonomia na superfície do que qualquer outro rover, incluindo inteligência autónoma que lhe permite cobrir mais terreno nas operações de um dia com menos instruções de engenheiros na Terra. Essa capacidade de avanço rápido (cortesia de sensores, computadores e algoritmos atualizados) pode se traduzir em mais capacidade científica ao longo da missão. Além disso, tornará a exploração da Lua, de Marte e de outros corpos celestes mais eficiente para outros veículos.
O Perseverance vai também testar novas tecnologias, como o MOXIE, que vai testar a produção de oxigénio da atmosfera de dióxido de carbono de Marte, demonstrando a forma como futuros exploradores podem produzir oxigénio para propelente de foguete, bem como para respiração.
Dois outros instrumentos ajudarão os engenheiros a projetar sistemas para que futuros exploradores humanos pousem e sobrevivam em Marte: O pacote MEDLI2 (Mars Entry, Descent e Landing Instrumentation 2) é uma versão de próxima geração do que voou na missão do Mars Science Laboratory o rover Curiosity, enquanto o conjunto de instrumentos MEDA (Mars Environmental Dynamics Analyzer) fornece informações sobre tempo, clima e radiação ultravioleta e poeira de superfície.
7. Um mini helicóptero que testa as condições de voo em Marte
Até agora as principais descobertas sobre Marte foram feitas por sondas em órbita, ou por robots no solo, mas a bordo do Perseverance, guardado na sua "barriga", segue uma outra experiência da NASA, o Ingenuity, um pequeno veículo que vai tentar perceber se é possível voar em Marte, recolhendo dados sobre o comportamento de uma aeronave noutro planeta.
A tarefa não se antevê fácil: a atmosfera fina de Marte dificulta a sustentação de qualquer objeto. Como a atmosfera do planeta vermelho é 99% menos densa que a da Terra, o Ingenuity precisa de ser leve, com pás de rotor muito maiores e que giram muito mais rápido do que seria necessário para um helicóptero com a mesma massa na Terra.
O frio será outro dos obstáculos a enfrentar pelas peças do Ingenuity, uma vez que a cratera de Jezero, onde o rover Perseverance irá "amarrar" com o Ingenuity anexado à sua base, pode atingir temperaturas de 130 graus Fahrenheit negativos (90 graus Celsius negativos) durante a noite.
O mini-helicóptero pesa apenas 1,8 kg e é composto por quatro pés, um corpo e duas hélices sobrepostas, medindo apenas 1,2 metros de uma ponta à outra de uma hélice. As hélices giram a uma velocidade de 2.400 rpm (rotações por minuto), cerca de cinco vezes mais rápido do que um helicóptero normal.
Para recarregar as baterias, o Ingenuity está equipado com painéis solares, sendo grande parte da sua energia utilizada para se manter quente na temperatura negativa de Marte, e também pode captar fotografias e vídeos.
8. A missão mais "participada" de sempre
A missão Mars 2020 Perseverance leva a bordo mais câmaras do que qualquer missão interplanetária da história, com 19 câmaras no próprio rover e quatro em outras partes da nave envolvida na entrada, descida e pouso. Tal como acontece com as missões anteriores a Marte, a missão Mars 2020 Perseverance planeia disponibilizar imagens brutas e processadas no site da missão.
Se tudo correr bem, vamos poder experimentar em alta definição como é pousar em Marte - e ouvir os sons da aterragem pela primeira vez com um microfone pronto para uso afixado na lateral do rover. Outro microfone do SuperCam ajudará os cientistas a entender as propriedades das rochas que o instrumento está examinando e também poderá ouvir o vento.
E a bordo do rover vai uma placa especial com três chips de silício onde está gravado o nome de mais 10,9 milhões de pessoas que se inscreveram para também participar nesta missão a Marte.
Pergunta do Dia
Em destaque
-
Multimédia
20 anos de Halo 2 trazem mapas clássicos e a mítica Demo E3 de volta -
App do dia
Proteja a galáxia dos invasores com o Space shooter: Galaxy attack -
Site do dia
Google Earth reforça ferramenta Timelapse com imagens que remontam à Segunda Guerra Mundial -
How to TEK
Pesquisa no Google Fotos vai ficar mais fácil. É só usar linguagem “normal”
Comentários